
AID – Sezione di Bergamo

Abilità di calcolo e discalculia. Proposte didattiche per la scuola primaria

Albino (BG) 21.11.2011

Lorenzo Caligaris Insegnante - Pedagogista

DSA, abilità strumentali, automatismi

Disturbi Specifici dell'Apprendimento (DSA)

Dislessia – Disortografia – Disgrafia – Discalculia

Abilità strumentali

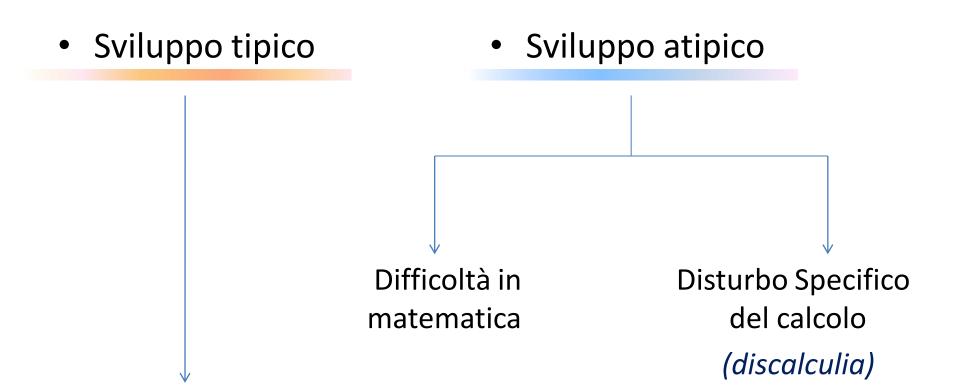
Lettura – Scrittura – Calcolo

Automatismi

(Rapidità e correttezza – Ortografia – Grafia – Fatti aritmetici)

Abilità e automatizzazione

• il termine *Abilità*


 esprime la capacità di eseguire una sequenza di azioni in modo rapido e corretto

• il termine *Automatizzazione*

- esprime la stabilizzazione di un processo automatico caratterizzato da un adeguato livello di velocità e accuratezza
- tale processo è realizzato in modo inconsapevole richiede un minimo impegno attentivo, è difficile da ignorare, sopprimere, influenzare

(G. Stella, 2001)

Abilità di calcolo e discalculia

La discalculia evolutiva

Disturbo delle abilità numeriche e aritmetiche

che si manifesta in bambini di intelligenza normale, che non hanno subito danni neurologici.

Essa può presentarsi associata a dislessia, ma è possibile che ne sia dissociata

(C. Temple; 1992)

Età della diagnosi: fine della classe terza della scuola primaria

La discalculia

ICD*-10:

- F81 Disturbi evolutivi delle abilità scolastiche:
 - F81.0 disturbo specifico della lettura
 - F81.1 disturbo specifico della compitazione
 - F81.2 disturbo specifico delle abilità aritmetiche
 - **–**

* International Classification of Diseases

Profili di discalculia evolutiva

(Discalculia semantica)

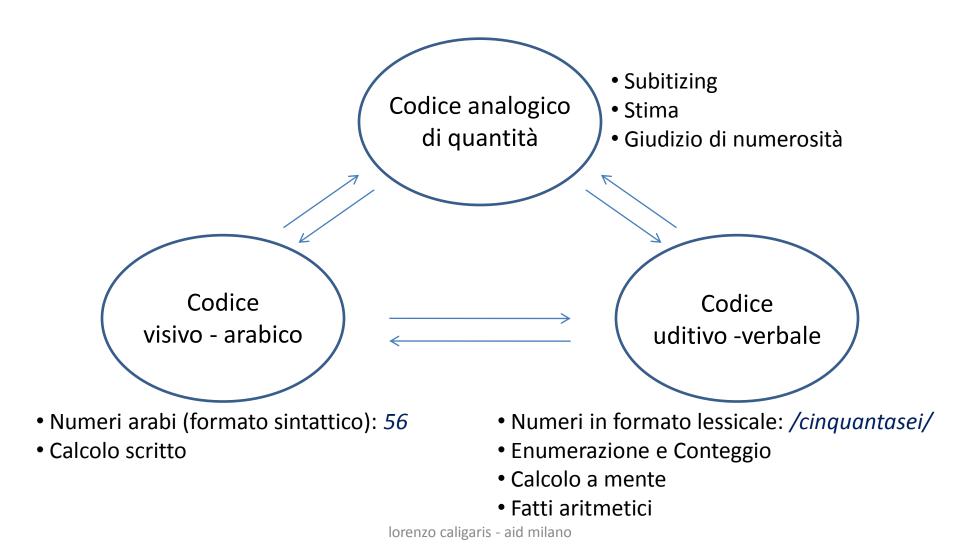
(Discalculia in comorbilità)

Debolezza nella strutturazione cognitiva delle componenti di cognizione numerica:

- Subitizing
- Meccanismi di quantificazione, seriazione, comparazione
- Strategie di calcolo a mente

Compromissioni a livello procedurale e di calcolo:

- Lettura e scrittura dei numeri
- Incolonnamento e algoritmi del calcolo scritto
- Recupero dei fatti aritmetici


(Consensus Conference, 2007)

Profili di discalculia evolutiva

- Dislessia per le cifre
 - Compromissione dei meccanismi lessicali
 Produzione di errori lessicali in compiti di lettura di numeri arabici e scrittura sotto dettatura
- Discalculia procedurale
 - Difficoltà nell'acquisizione delle procedure di calcolo senza errori di processazione numerica
 Errori di riporto, prestito, incolonnamento
- Discalculia per i fatti aritmetici
 - Difficoltà nell'acquisizione dei fatti aritmetici
 Errori nelle tabelline e nei calcoli semplici

C. Temple (1992)

Modello del *Triplo Codice* di Dehaene e Cohen (1995)

Il sistema numerico

Comprensione

Comparazione, serazioni, stima

(operazioni numeriche a base semantica)

Produzione

Lettura dei numeri (lessico numerico)

Scrittura dei numeri (sintassi del numero)

Il sistema di calcolo

Automatismi
 Tabelline, risultati memorizzati
 (recupero)

Calcolo

Operazioni a mente (strategie)

Operazioni scritte (procedure)

- Codificare semanticamente un numero equivale a rappresentare mentalmente la quantità che esso rappresenta e quindi a identificarne la posizione che esso assume all'interno della linea dei numeri.
- Si tratta di una rappresentazione concettuale che corrisponde al "significato" di un numero

- I bambini possiedono fin dalla nascita una conoscenza astratta della matematica.
- Il cervello umano possiede un meccanismo di comprensione delle quantità numeriche, ereditato dal mondo animale, che lo guida nell'apprendimento della matematica.

 I bambini non solo nascono con la capacità di riconoscere numerosità distinte fino a un massimo di circa quattro, ma distingono i cambiamenti di numerosità provocati dall'aggiunta/sottrazione di oggetti, ossia possiedono "aspettative aritmetiche".

- La numerosità è il numero che si ottiene quando si contano gli elementi di un insieme
- Contare significa:
 - stabilire una corrispondenza biunivoca fra ciascun oggetto dell'insieme e un numero
 - stabilire una corrispondenza biunivoca fra ciascun oggetto e un vocabolo numerico, dove il vocabolo numerico corrispondente all'ultimo oggetto contato indica la numerosità degli elementi
- Contare è la chiave della numerosità

Principi del conteggio

- ASSOCIAZIONE UNO A UNO
 - Associare parole-numero a oggetti
 - Separare gli oggetti contati da quelli da contare
- ORDINE STABILE
 - Utilizzare in modo stabile una sequenza di numerali
- CARDINALITA'
 - Sapere che il numero di oggetti di un insieme corrisponde all'ultimo numerale utilizzato per contare quell'insieme
- IRRILEVANZA DELL'ORDINE
- GENERALIZZAZIONE

Gelman e Gallistel (1978)

Core system - cardinalità

Subitizing

Stima

 L'automatismo del subitizing consiste in una funzione visiva che consente un rapido e preciso giudizio numerico eseguito su insiemi di piccole numerosità di elementi

 La stima è un processo numerico a base semantica che consiste nel determinare in modo approssimativo e senza contare valori incogniti (grandi numerosità).

Conteggio

Contare è fondamentale.
 Costituisce il primo
 collegamento tra la capacità
 innata del bambino di
 percepire le numerosità e le
 acquisizioni matematiche
 più avanzate della cultura
 nella quale è nato.

 Imparare la sequenza delle parole usate per contare è il primo modo con il quale i bambini connettono il loro concetto innato di numerosità con le prassi culturali della società in cui sono nati.

Strategie

- Se per la matematica è indifferente come sei mele siano disposte sul tavolo per continuare a essere sei, per la nostra mente è diverso.
- Abbiamo bisogno di ordinare i nostri oggetti mentali con un ordine prestabilito e stabile se vogliamo conservarli in mente.

• Il calcolo mentale è il superamento del conteggio

(C. Bortolato, 2005)

Il numero. Indicazioni per il curricolo della scuola dell'infanzia

- Traguardi per lo sviluppo della competenza
 - Raggruppa e ordina secondo criteri diversi
 - Confronta e valuta quantità
 - Utilizza semplici simboli per registrare

Abilità numeriche e abilità di calcolo

- Competenze numeriche del bambino all'ingresso della scuola primaria:
 - Enumerazione fino a 10
 - Conteggio fino a 5
 - Cardinalità del numero
 - Comparazione di piccole numerosità

(Consensus Conference, 2007)

Didattica e comprensione del numero

- Comparazione
 - Giudizio di numerosità

- Seriazione
 - Riordino di sequenze numeriche

- Stima
 - Approssimazione numerica

Produzione del numero

• 41006

• 305

• 1009

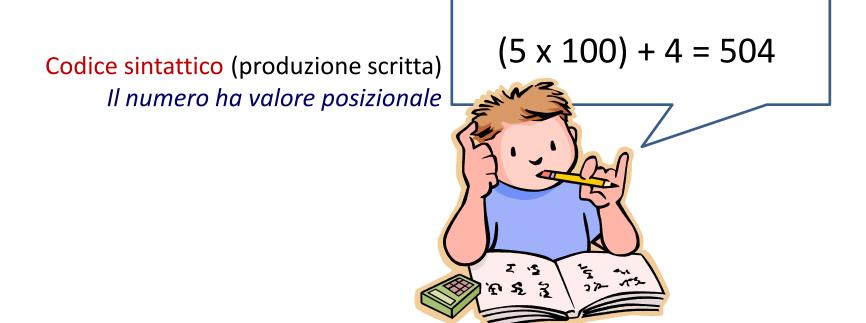
Quattrocentosei

Trentacinque

Centonove

Produzione scritta del numero (codice sintattico)

Produzione verbale del numero (codice lessicale)


- I meccanismi sintattici regolano il valore posizionale elle cifre
- Costituiscono la grammatica interna del numero che attiva il corretto ordine di grandezza di ogni cifra
- Nella codifica verbale di un numero ogni cifra assume un "nome" diverso a seconda della posizione che occupa.
- Nei sistemi di comprensione e/o produzione dei numeri, i meccanismi lessicali hanno il compito di selezionare adeguatamente i nomi delle cifre per riconoscere quello del numero intero.

Produzione del numero

cinquecentoquattro!

Codice lessicale (produzione verbale)

Il numero ha valore nominale

Didattica e produzione del numero

- Dettato di numeri
- Lettura di numeri
- Trasformazione in cifre
 - da parole-numero a numerali
 - codifica sintattica del numero

Operazioni di transcodifica numerica

Didattica e sistema dei numeri

- Regole semantiche
 - Rappresentazione astratta del numero
 - Giudizio di numerosità
- Regole sintattiche
 - Grammatica del numero
 - Valore posizionale delle cifre
 - Scrittura di numeri
- Regole lessicali
 - Riconoscimento del nome del numero
 - Enumerazione e Conteggio
 - Lettura dei numeri lorenzo caligaris aid milano

Didattica e sistema dei numeri

- 9 *è minore di* 5
- 319 (scritto)312 (letto)
- 1492 (dettato)
 10004100902 (scritto)
- 23, 17, 58, 91
 (sequenza numerica)
- 2006 (dettato)2060 (scritto)

- Semantico
- Lessicale
 TRANSCODIFICA
- Sintattico (lessicalizzazione) TRANSCODIFICA
- Semantico

SintatticoTRANSCODIFICA

Didattica e sistema dei numeri

- Compiti che implicano la codifica semantica del numero
 - Giudizio di numerosità
 - Seriazioni numeriche
 - Subitizing
 - Stima
- Compiti che implicano l'uso del codice sintattico del numero
 - Dettato di numeri
 - Trasformazione in cifre
- Compiti che implicano l'uso del codice lessicale del numero
 - Enumerazione
 - Lettura di numeri

Il sistema di calcolo

Automatismi
 Tabelline, risultati memorizzati
 (recupero)

Calcolo

Operazioni a mente (strategie)

Operazioni scritte (procedure)

Automatismi, strategie, procedure

Calcolo

Recupero

il risultato dell'operazione richiesta è ottenuto attraverso l'utilizzo di strategie o procedure

 \int

Calcolo a mente
Calcolo scritto

il risultato dell'operazione richiesta è recuperato direttamente dalla memoria

Fatti aritmetici

Automatismi di calcolo

La verifica degli automatismi di calcolo deve avvenire oralmente

La risposta deve essere rapida (circa 5 secondi)

Se il tempo di risposta è maggiore, allora il risultato è stato ottenuto attraverso l'utilizzo di una procedura o di una strategia di calcolo.

Automatismi di calcolo

Fatti aritmetici = Automatismi

- Addizioni entro la decina
- Tabelline
- Risultati memorizzati

Strategie di calcolo

L'uso di strategie costruttive del calcolo a mente consente di operare scomposizioni sui numeri per ottenere operazioni intermedie più semplici:

- proprietà delle operazionicommutativa: 23 + 66 = 89 (66+23 = 89)
- strategia N10
 scomposizione del secondo operatore:
 66 + 23 = 89 (66+20 = 86), (86+3 = 89)
- strategia N1010
 scomposizione di entrambi gli operatori:
 66 + 23= 89 (60+20 = 80), (6+3 = 9), (80+9 = 89)

Strategie di calcolo

Strategia N10 Scomposizione del secondo operatore in decine e unità

$$65 + 17 = (65 + 10) + 7$$

 $65 + 17 = (65 + 10) + 5 + 2$

$$65 - 17 = (65 - 10) - 7$$

 $65 - 17 = (65 - 10) - 5 - 2$

Strategie di calcolo

Strategia N1010

Scomposizione di entrambi gli operatori in decine e unità

$$65 + 17 = (60 + 10) + (5 + 7) = 70 + 12$$

Strategie di calcolo

Il calcolo scritto è un paragrafo del calcolo mentale, e non il contrario.

Il calcolo scritto è un ripiego, una protesi costituita da carta e inchiostro per situazioni in cui la mente è in difficoltà per i suoi limiti di rappresentazione.

Il calcolo mentale è il superamento del conteggio

(C. Bortolato, 2005)

Strategie di calcolo

Il calcolo scritto è cieco.

Procediamo colonna per colonna fino alla definizione del risultato finale come se si trattasse sempre di unità. Il calcolo scritto è la rinuncia alla visione strategica delle quantità.

Nel calcolo scritto applichiamo procedure, al contrario nel calcolo mentale ognuno è libero di inventarsi delle strategie.

(C. Bortolato, 2005)

Procedure di calcolo

190

Routine procedurali

- elaborazione delle informazioni aritmetiche
- incolonnamento
- serialità SX ← DX
- riporto
- prestito

•

• Recupero dei fatti aritmetici

$$5 + 5 = 10;$$

$$6 + 2 = 8$$
;

$$8 + 1 = 9$$
;

Algoritmi di calcolo

modello min (counting on)

modello sum

conteggio totale

Algoritmi di calcolo

Conteggio totale (counting all)

Conteggio dal primo addendo (counting on from first)

$$2 + 5 = 7$$
 (2) 3, 4, 5, 6, 7

Conteggio dal numero maggiore (counting on from larger)

$$2 + 5 = 7$$
 (5) 6, 7

(Groen, Parkman; 1972)

Abilità numeriche e abilità di calcolo

$${4+(3\cdot7-6\cdot3)^2+[9-(12:4+2)+3]}-7\cdot1+7\cdot0=$$

- Leggere e scrivere i numeri
 - meccanismi lessicali e sintattici
- Applicare routine procedurali
 - elaborazione delle informazioni aritmetiche
 - serialità dell'algoritmo di risoluzione
- Utilizzare automatismi di calcolo
 - recuperare i fatti aritmetici
- Utilizzare strategie di calcolo
- Utilizzare algoritmi di calcolo

Didattica e sistema di calcolo

- Automatismi
 - Recupero del risultato in memoria
 - Tabelline
 - Addizioni e sottrazioni entro la decina
- Strategie
 - Regole di scomposizione-composizione
 - Calcolo a mente
- Procedure
 - Routine delle operazioni
 - Calcolo scritto

Didattica e sistema di calcolo

•
$$3 \times 9 = 36$$
 (orale)

• 251 –

190 =

- 141 (scritto)
- 48 + 24 = 62 *(orale)*
- 240 : 6 = 4 *(scritto)* 00

- Automatismo
- Automatismo
- Procedura

- Strategia
- Procedura

Didattica e sistema di calcolo

- Compiti che implicano l'attivazione di automatismi
 - Addizioni (e sottrazioni) entro la decina
 - Tabelline
- Compiti che implicano l'attivazione di strategie
 - Calcoli mentali
- Compiti che implicano l'applicazione di procedure
 - Operazioni scritte

L'intervento della scuola

L'intervento della scuola deve mirare a realizzare le condizioni per consentire all'alunno con DSA di raggiungere gli obiettivi di apprendimento nel modo e al livello in cui le sue personali potenzialità cognitive glielo consentono

L'intervento della scuola

La ricerca del miglioramento della padronanza delle abilità strumentali va condotta nei limiti di ciò che è modificabile attraverso l'insegnamento e l'apprendimento

L'intervento della scuola

Ciò che non è modificabile, va compensato con l'adozione di strumenti e misure di tipo compensativo e dispensativo

L'intervento deve "mettere a fuoco" le potenzialità, non le difficoltà

Potenziare, abilitare, compensare, dispensare

potenziare

arricchire ed estendere il curricolo naturale per mezzo del curricolo scolastico

abilitare

rafforzare e incrementare il funzionamento di abilità poco efficienti per mezzo di interventi specifici

compensare

stabilire una situazione di equilibrio attraverso l'impiego di mezzi e criteri idonei a supplire funzioni carenti

dispensare

esonerare in modo parziale dallo svolgimento di specifiche attività caratterizzate da particolari vincoli esecutivi

- Il gioco dell'oca
- Il gioco con le carte
- Il gioco del domino
- Il gioco della tombola

- L'abaco
- I numeri in colore

Gioco dell'oca

- Operazioni numeriche:
 - Subitizing
 - Conteggio
- Calcolo:
 - Automatismi
 - Calcolo mentale

Carte da gioco

Operazioni numeriche:

- Subitizing
- Conteggio

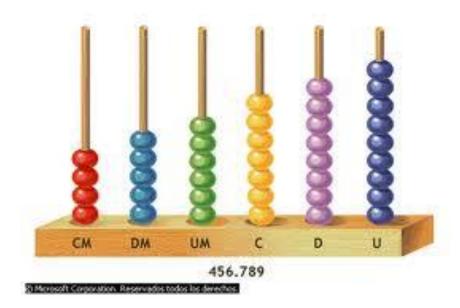
• Calcolo:

- Automatismi
- Calcolo mentale

Gioco del domino

- Operazioni numeriche:
 - Subitizing

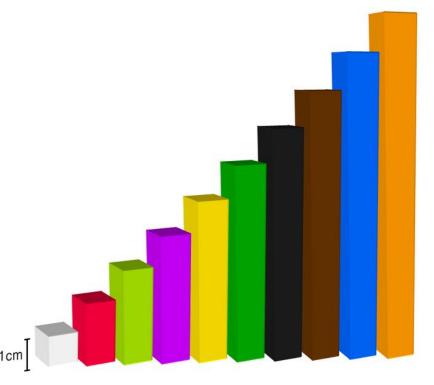
- Calcolo:
 - Automatismi


• Tombola

Operazioni numeriche:

 Lessico del numero (lettura dei numeri)

Abaco


Operazioni numeriche:

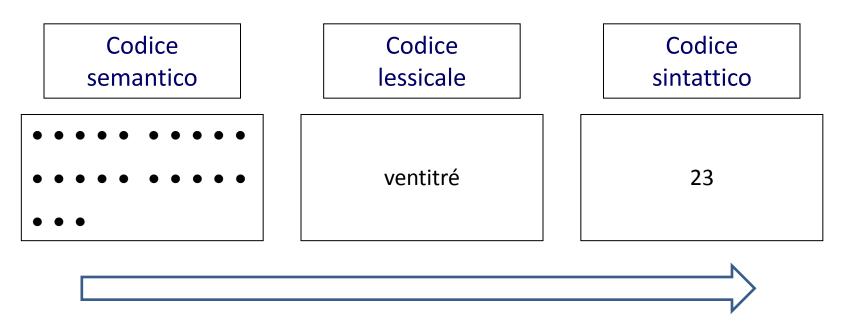
- Conteggio
- Sintassi del numero (scrittura dei numeri)

- Calcolo:
 - Operazioni scritte

 Numeri in colore (regoli)

Operazioni numeriche:

• Calcolo:


- Operazioni logiche:
 - Seriazioni

- Intervento di potenziamento
 - Scelte metodologiche (es.: didattica analogica)
- Intervento di abilitazione
 - Percorsi operativi (es.: intelligenza numerica)

DIAGNOSI

- Intervento compensativo-dispensativo
 - Strumenti di lavoro (es.: tabella pitagorica)

La didattica analogica

La preoccupazione per il valore posizionale delle cifre cede il posto alla considerazione del valore posizionale che ciascuna pallina occupa nello spazio della memoria

(C. Bortolato, 2002)

La didattica analogica

00000

Un piccolo scarto di simmetria.

In questo piccolo scarto di regolarità tra il cinque e il sei sta tutta la differenza tra una didattica capace di sviluppare il calcolo mentale e una didattica sempre condannata alla fase della conta.

(C. Bortolato, 2005)

Strumenti compensativi

 Gli strumenti compensativi sono strumenti didattici e tecnologici che sostituiscono o facilitano la prestazione richiesta nell'abilità deficitaria

Decreto N. 5669/2011

Misure dispensative

 Le misure dispensative sono interventi che consentono all'alunno di non svolgere alcune prestazioni che, a causa del disturbo, risultano particolarmente difficoltose e che non migliorano l'apprendimento.

Decreto N. 5669/2011

- Il programma carta e matita "L'intelligenza numerica" è rivolto a bambini dai 3 agli 11 anni di età.
 - Può essere utilizzato anche per ragazzi della scuola media che presentano difficoltà nelle abilità di calcolo.
- Comprende esercizi relativi al sistema dei numeri e al sistema del calcolo.

(Lucangeli, Molin, Poli, De Candia; 2003)

- Il calcolo scritto è l'area del programma meno nutrita in quanto si ritiene che, nei primi anni di scuola, sia opportuno assecondare e sviluppare soprattutto il calcolo mentale che ha il vantaggio di rendere flessibili e di aiutare nella costruzione dei fatti aritmetici, nel loro rapido recupero.
- Il calcolo mentale realizza i risultati parziali implicati nel calcolo scritto.

(Lucangeli, Poli, Molin, De Candia; 2003)

 Nel Progetto "L'Intelligenza Numerica", le aree di lavoro su calcolo a mente (strategie) e calcolo scritto (procedure) sono così distribuite:

Secondo volume (6-8 anni):

- Calcolo a mente: 83%

- Calcolo scritto: 17%

• Terzo volume (8-11 anni):

- Calcolo a mente:49%

- Calcolo scritto: 51%

• CALCOLO A MENTE: 63% CALCOLO SCRITTO: 37%

(Lucangeli, Poli, Molin, De Candia; 2003)

n x 1 n x 10

Tabellina del 2 Tabellina del 5

X	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6			15					30
4	4	8			20					40
5	5	10	15	20	25	30	35	40	45	50
6	6	12			30					60
7	7	14			35					70
8	8	16			40					80
9	9	18			45					90
10	10	20	30	40 lorenzo	50 caligaris - a	60 id milano	70	80	90	100

Con l'utilizzo di due regole e l'apprendimento di due tabelline si controlla il 64% dei nodi della tavola pitagorica Con la memorizzazione di 15 "incroci" si controllano 28 nodi

- Uno, due, dui. Una didattica per la discalculia
 - Galvan, Biancardi
 - Libriliberi
- L'intelligenza numerica (tre volumi)
 - Lucangeli, Poli, Molin, De Candia
 - Erickson
- Memocalcolo
 - Poli, Molin, lucangeli, Cornoldi
 - Erickson

- La linea del 20
 - Bortolato
 - Erickson
- La linea dei numeri
 - Bortolato
 - Erickson
- La linea del 100
 - Bortolato
 - Erickson

- La discalculia
 - lanes, Lucangeli, Mammarella
 - Erickson
- Il bambino e la costruzione del numero
 - Liverta Sempio
 - La Nuova Italia Scientifica
- Lo sviluppo dell'intelligenza numerica
 - Lucangeli, Iannitti, Vettore
 - Carocci

- Psicologia della cognizione numerica
 - Lucangeli, Mammarella
 - Angeli
- Noi e i numeri
 - Girelli
 - Il Mulino
- Il pallino della matematica
 - Dehaene
 - Cortina

Software

- Calcolare a mente
 - Bortolato
 - Erickson
- Potenziare le abilità numeriche e di calcolo
 - Biancardi, Pulga, Savelli
 - Erickson
- Discalculia trainer
 - Molin, Poli, Tressoldi, Lucangeli
 - Erickson